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LOCAL MAXIMA OF THE SAMPLE FUNCTIONS

OF THE N—PARAMETER BESSEL PROCESS

*
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e

Indiana University , Bloomington

Abstract. In this paper we show that almost every sample

function of the N—parameter Bessel process assoc iated with

the N—parameter Wiener process has a local maxima . In

addition some properties related to the local maxima are

investigated .

1. Introduction and Preliminaries. Let be the

N-parameter Wiener process , that is a real valued Gaussian
N

process with zero means and covaniance 2 (s .~~t.) where
i~~1 

1 1

s = (s.), t = (t.), s. � 0, t . � 0, i = 1, . . . , N . Then

is to be the process with values in d-dimensional

Euclidean space R
d 

such that each component is an

* Work supported by the ~\ir Force Office of Scientific
Research , A .F.S.C.U.S .A .F., Grant No. AFOSR76-~~~~~. ~Reproduction in whole or part permi tted for any :~urr~ se of
the United States Government.
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2 .

N— parameter Wiener process, the components being

independent. Write W = W ~~~
’
~~ for simplicity , and denote

the ith component of W by W
1 

. Define the N-parameter

Bessel process associated with W by

d ½
(1.1) B

~ 
=

It is shown that almost every sample function of

has a local maxima, Furthermore some properties related to

the local maxima ~f are investigated.

**
As in Orey and Pruitt (1973), our parameter space

is R~ , that is the set of t 
~ 
R
N 

with all components non--

negative . When dealing with a point t in the parameter

space we sometimes write t = (t1, . . . .  t~) or simply

(t.) . In case all t. = 0 , we write t = (0) - For

s (s.) and t = (t.) with s. ~ t. , the interva l
1 1 1 1

N
is denoted by A (s,t) , and by ~(t) in case

s = <0) . Denote by S(s,t )  , the symmetric difference of

~ (s) and ~(t) - Then it is easy to check that if

s,t~~ R~ , the variance of W
1 ( t )  — W1(s~ is ~S(s , t)~ where

denotes the N—dimensional Lebesgue measure. Furthermore ,

** Wherever possible , we shall use the notation of Orey and
Pruitt (1973) .
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3.

W has continuous sample functions and independent increments.

We denote the increment of W over \(s,t) by W(~~(s ,t)).

For further information on W , the reader is referred to

Kitagawa (1951), Chentsov (1956), Yeh (l960 ,1963a, l963b), Park ,

C. (1969), Park, W . J. (1970), Zimmerman (1972) and Orey

and Pruitt (1973)

Definition 1.1. The sample function B(.,.1 ) has a local

maxima at s if there exists an open set 0 containing s

such that 0CR~ and ~~~~~ �B(s ,L’) for all t~~0

We shall need the Orey-Pruitt analogue of the familiar

zero—one law. Let C be the class of time intervals inn
N . -n

R+ 
with vertices of the form ~k .2 ), k~ nonnegative

integers, and having all sides of equal length , and for n > 0

each member of C is to be a subcube of one in . Let

= u C , and 
~ ~(w(~),~ 

) 
‘ 

= Thus 
~

is the Borel field generated by the indicated class of random

variables and ~~ is the smallest Borel field including all

For a subset D of R~ , we put C (D) = ; ~ cD1

~ (D) =~ [w(~) ; ~~c (D)) , ~~ (D) = V ~ (D) then we have
fl n=0 ‘~

the following lemma .

Lemma 1.1 (Orey—Pruitt (1973)). Let D ;R~ , m l , 2 ,

-
~ —--  _ _ _ _ _ _ _ _ _ _ _



4.

with D . If A~~~ (D ) for every m , then p (A) = f0, 1~m — m

Lemma 1.2. Let ~ be a nonnegative, nondecreasing,

continuous function defined for large arguments. Then for

almost all j, there is an e (’i’) such that for all intervals

t’(s,t) with ‘(s,t) c ~((1)) and t ~(s ,t) < e (r)

IW (A (s ,t)) < I ~(s,t) l~~~( ~(s ,t)

if and only if

~~log ’ 
3N÷d/2 — 2  e~~

2
( /2

d~

converges.

For the proof of this lemma , see Orey and Pruitt

(1973, page 147).

2. Local Maxima. In this section we prove tne main theorem

dealing with the existence of the local maxima of the sample

functions of the Bessel process Bt



Theorem 2.1. For almost all sample functions of the Bessel

process Bt 
defined in (1.1), there exists a local maxima.

Proof. Let s be the center of the unit interval U , and let

C U be a cube with center at s , sides parallel to the

ncoordinate axes and equal to a . Let u and v be the

smallest and the largest vertex of C i.e. closest and

farthest from the origin <0) . Pick C with

min(i.1~ , . . . ,  u~) >¼
nk flk N nkConsider two points s and v of R+ determined by =

nk n nk nk n Vv
k 

= V
k , 

s. = v , = u. for j~~k where 1 < j c N

Let ~(r,’~) be any interval in U with at least two sides

smaller than a . Definen

A ~ eW
i(s~~ ) W1(u) > 2a½ , W

i
(s~~ ) - W

1
( v

flk
) >2a~~fli k=l

B . 
k=l 

- W1(u) < ~2a
½ , W~~(s~~ ) - W

i
(~/1k) < -2a 2

C . 
~ 

inf W1 �0 !ru. t
t~~Cn

E . C sup W~ ~ 0~
t~~Cn

F . = ~ sup 1W
1 ( ~(r,’)) I (2

N_l 
- 1) 

_l
a½~

r,P E T J
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6.

i nk i i nk i nkThe variables W (s ) - W (u) , W (s ) -w (v ) are

normally distributed with mean 0 and variances greater

than 4-N+½ Thus P(A . )  >~~ for some constant ~ni.

Let (a~~ be a sequence of positive numbers with

a j  0 and let D be the interior of S(u’~,v~ ) . Clearly

~~~ -~ as ~~~ 0 . Observe that the event 
~~~~~~ 

infinitely

often ~ ~ (D ) . Thus, from Lemma 1.1, it follows that
~ n

P(A infinitely often) = 1
ni

Analogously ,

P(B infinitely often) =1ni

Let ~ >0 . Then by Lemma 1.2, or by the continuity of the

sample functions of W

PC ‘‘c w1 >~~~~~l as ~n . S - 0n=no 1

Furthermore,

PCA .C . infinitely often~ � P~ (A infinitely often) C .ni ni ni — ni-

� P
~~

’ C . 0

i� p ~~
,— C .~ W ‘> .-

~~~~~

n=n ~~ 
-

0
Since PEW ’>~i converges to ½ as “-oO , by picking -

~ small enough

and then 
~~ 

large enough , the probability of the last event can

be made as close to ½ as desired.

~

-

~

- -

~

- V



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- - — - — - - - - - -- - - - —--- _____________________

7.

It is now clear that

P~ (A .C U B .E .) i.o.~ = 1
ni ni. ni ru.

Also, by Lemma 1.2 and by the independence of the components of W

d
pr ~ (A .C .F . U B .E .F .) i . O . ’ = 1fli ni ni ni ni ni

i= 1

Let t ~C where ~C is the boundary of C , and let

P
t 

= (c(t1
), ..., a (t~))

where

n nrt . if u . < t .<v ,
c (t.) = i i. 1 1

s. otherwise
1

Observe that P
t 

lies in the interior of C . Now consider

events of the form

d
fl A . where A . A • C • F . or B • E .F .
i=l fl i fl i ni ni ni ni. ni ni

and note that there are events of this form.

We now cla im that

d
(2.1) 

~C sup B > sup B fl A .C .F . ‘ = 1t t nl ni ni
_

tcC° t~~~ C i=ln n

A slight variation of the proof along the same lines can

be applied to 2d _ 1  other events. To prove (2.1), let

_ _ _ _  ----~~~~ -~~~~~~~~~~~~~~~ -~~~~~~~~~
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(

d
(2.2) G = fl A .C .F

~ i=1 ~~ ~~ ni

= fl C n  £W~ (p~) -W
1(t~ >a~~~i—i 

V

Now

W1(pt)~~_ W
1(t) W1((a(t1

), t2, . . .,  t
N
))

. .. ,  tN)) + W1(<~~(t1),c(t2),t 3
, • . .

~~ 
tn

) )

—W1((a (t1
),t2, . . .,  tN)) + . . .  + W1((c(t 1),c(t2

), . . .,

—W1((c(t
1
), . . . ,

Consider the random variable

W1((c(t1
), . . . ,  c ( t .~~~ ) ,  

~ (t.), t~÷1~ t
a))

(2 3)

— W1((c(t1
), . . .,  ~ (t .1 ), t i ,  t~~1 

. . .  t
N
)).

The variance of this variable is equal to

(u~ + e~~ ... (u~ 1 +e~ 1)~~~(t ,) -t .~~(u~~1
+e~~ 1

) . . .  (u~~+e~ )

where 0 c e” � a~. It is now easy to see that (2.3) is equal to

W1(<u ~ , . . .,  u’~~1, cy (t.), ~~~~ . . . ,  u~)) 

— - -~~~-.~ ~~~~~~~~~~~
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—W~ (<u ~ , . . . ,  ~~~~~ t., ~~~~ . . . ,  u~)) ~L
1

where L1 can be decomposed into no more than 2
N 1  

- 1

normally distributed random variables , such that the mean

of each of these random variables is zero and the variance

of each is equal to the N-dimensional Lebesgue measure of

an interval in U with at least two sides smaller than a
n

Since t~~~C • t. is equal to u~ or v
1’ and ~ (t.) = ½ for some

n J J

1 <j ~~ N . Therefore
d

P(H fl C~~~~G )=l
fl i=l fl i fl

However,

d
P
~ 

sup
0 
B
t 

> sup B
t ~~~ 

~~ 
C . = 1

t~C~ t~~C i=l
n

Hence

~C 
sup0 

B
t 

> sup B
t ~~~ 

1
t~C~ t~~Cfl

where G is defined in (2.2).
n

The proof is now completed. Recall that s was picked

to be the center of U . Actually , s can be chosen to be

any point in ~0 • The Vefore , for almost all sample functions

Nof B
t , the set of local maxima is dense in R+

We shall now investigate some properties of the local

maxima of B
t
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Definition 2.1. The sample function B(.,~~) has a strict

local maxima if there exists an open set 0 containing s

such that 0cR~ and B (t,~~)<B(s ,i~) for all t~~0

We have the following theorem.

Theorem 2.2. For almost every sample function of

js , t R~~ , all the local maxima are strict and the set of

local maxima is countable.

Proof. Let I and J be two disjoint, closed

intervals in the interior of R~ . We claim that

(2.4) P[sup B
t= sup B

t
’
~ 
=0

tEl t~J

Let 1= ~(u,v), J= ~js,t) . Denote the complements of

~(t) and A (v) by ~ A (t)J’ and t~~(v) ’ . Since I and

J are disjoint intervals , it is clear that

~~ (u) n ~~ (t)~~~ U ~~ (s) fl E~~(v)J’~

contains a nondegenerate interval, i.e., an interval with

positive N-dimensional Lebesgue measure. Let I’ be any

such interval, and without loss of generality assume that

I’ c ~(u) fl ~
(t )

~
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Cons ider now

pr sup = sup
t,~I t~:J

d . d2 i 2~~-= P~ SUp~~(W 1 ) + 
~~

“ (we) 
~ 2 

= supC V (W
e
) ~ 2~~

t~ I 
~ i~ 2 t~~~J i~~l

Let W1(I) be the increment of W1 over I, . Since
1

W has independent increments, for t I , we can write

= W~ - W1(I’) +

such that W1(I’) is independent of W~ — W1(I’) for all t~~I
d

Also , W1(I’) is independent of sup~ ~ 
(W~ )

2
’ since I’ c

t~J i~ l

Let X = W1(I’) , = W~ - W’(i’). For an arbitrary fixed

‘U consider

(2.5) PC sup[(X+Y
~~

(i ))
2 

+ 

i~ 2 ~~~~~

= sup[ ~ (W’(’L’))
2
)~~

t~ J i=l

We shall now show that (2.5) equals zero for a fixed ii

Consider the function f(x) , defined by

2 i 2~~-f(x) = sup[ (x + 

~~~~~~ 
+ 

~~~ 
(W
e
) ~~~tE l i~~2 

~~~ — — ~~~~~~~~~~~~~~~~~ -~~~~~~
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Note that f(x) equals the suprernuzn of the distance

from the origin of the set D in R
d defined by

d 2 dD z~~~R : Z
1

y ( 1V ) +~~~, = W~~
(r), . .. ,  Z~~ = W

~~~~
)

for some t .2

It is now easy to see that as x varies from —= to ~

the sc~ D
~ 

is translated along a vector parallel to a

coordinate axis and so f(x) decreases and then increases as x

goes from -
~~ to +.~ . For a fixed i , (2.5) equals

(2.6) PCX f~~ ( sup ~ (W~ (5))
2
)’

t~ J i=l

where f
1 is the inverse of f . It is clear that there

d
are almost 2 values of f 1 ( sup ~ (W~Ju ))

2
) , and

t~J i=1
since X is normal random variable , (2.6) equals 0 . Thus ,

for each fixed ‘r , (2.5) equals zero. The proof of (2.4)

follows by integrating (2.5) over the probability space .

Consider the set (~~~sup I3 .~ ~ sup
t~ I t~cJ

where the intersection is taken over all intervals I and J

with rationa l least and largest vertices , i.e., the

coordinates of u,V.s,t are all rational. This set contains

the set of ~‘ such that all local maxima of B (.,r) are strict.

Clearly, this set has probablity one .

- -  - -  -- V
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Countability of the set of local maxima is a

consequence of the fol lowing Lemma .

Lemma 2.1. Let f be a continuous, real valued function on

R
N with all local maxima strict. Then f has countably

many local maxima.

This Lemma is a s t ra ightforward generalization of the

univar ia te  case , the proof of which can be found in Freedman

(1971)
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